The Effect of Robusta Coffee Extract (Coffea canephora) Lampung Againsts to The Number of Cerebellar Purkinje Cells in Male Rats Strain (Rattus norvegicus) Sprague dawley Induced by Monosodium Glutamate


  • Ilham Nugroho Universitas Lampung
  • Anggraeni Janar Wulan Bahasa Indonesia
  • TA Larasati Bagian Ilmu Kedokteran Komunitas, Fakultas Kedokteran, Universitas Lampung
  • Khairun Nisa Berawi Bagian Ilmu Fisiologi, Fakultas Kedokteran, Universitas Lampung


cerebellar purkinje cell, monosodium glutamate, robusta coffee


Excessive consumption of monosodium glutamate has a neurotoxic effect on the brain, one of which is the cerebellum. The caffeine and chlorogenic acid compounds contained in coffee beans have potential as an anti-inflammatory and neuroprotective agent thus protecting rats from neurotoxicity by glutamate involved with the death of cerebellar purkinje cells. This research is an experimental study with Completely Randomized Design (CRD) with a Posttest Only Control Group Design approach. The research subjects were 25 rats which were divided into 5 groups which are K- (aquadest 3,5 ml/day), K+ (MSG 4 g/kgBW/day), P1, P2, P3 (MSG 4 g/kgBW/day and robusta coffee extract lampung 1,5 ml/200gBW/day with a concentration of 0,03 g/ml; 0,06 g/ml; 0,12 g/ml respectively) with each group consisting of 5 rats. The number of purkinje cells is calculated by manual counting assisted by Image J software in 3 sections with 5 visual fields each in 400x magnification. The average number of cerebellar purkinje cells in K-, K+, P1, P2, and P3 were 22,72; 11,88; 22,44; 25,28; 27,12 respectively. One Way ANOVA test obtained p value=0,000 (p<0,05). Post Hoc LSD test on the number of purkinje cells showed a significant differences (p<0,05) between K- and K+ (p=0,000), K- and P3 (p=0,006), K+ and P1 (p=0,000), K+ and P2 (p=0,000), K+ and P3 (p=0,000), and P1 and P3 (p=0,004). There is an effect of robusta coffee extract (Coffea canephora) lampung againsts to the number of cerebellar purkinje cells in male rats strain (Rattus norvegicus) Sprague dawley induced by monosodium glutamate.


Hamni A, Akhyar G, Suryadiwansa, Burhanuddin Y, Tarkono. 2013. Potensi pengembangan teknologi proses produksi kopi lampung. J Mechanical. 4(1): 45–51.

Direktorat Jenderal Perkebunan (Ditjenbun). 2017. Kementerian Pertanian. Statistik Perkebunan Indonesia: Kopi 2015-2017. Diakses pada 20 Oktober 2018.

Eskelinen MH, Kivipelto M. 2010. Caffeine as a protective factor in dementia and Alzheimer’ s disease. J Alzheimers Dis. 20(1):167-74.

Lee M, Mcgeer EG, Mcgeer PL. 2016. Quercetin, not caffeine, is a major neuroprotective component in coffee. Neurobiol Aging. 46(1):113–23.

Food Standards Australia New Zealand. 2003. Monosodium glutamate a safety asessment technical report series no. 20. Australia : FSANZ.

Sharma A, Prasongwattana V, Cha'on U, Selmi C, Hipkaeo W, Boonnate P et al. 2013. Monosodium glutamate (MSG) consumption is associated with urolithiasis and urinary tract obstruction in rats. PLoS ONE. 8(9):1–9.

Owoeye O, Salami OA. 2017. Monosodium glutamate toxicity : sida acuta leaf extract ameliorated brain histological alterations, biochemical and haematological changes in Wistar rats. Afr J Biomed Res. 20(2):173–82.

Eweka A, Iniabohs FO. 2006. Histological studies of the effects of monosodium glutamate on the cerebellum of adult Wistar rats. J Neurol. 8(2):1–5.

Ashraf S, Yasoob M, Amin M, Khan MA, Bukhari MH. 2017. Effects of monosodium glutamate on purkinje cells of the cerebellum of adult albino rats. APMC. 11(1):1–5.

Aidaros AEE, Ibrahim AA, Mohammed HO, Hassan NH. 2019. Effect of monosodium glutamate on the cerebellar cortex of male albino rat and protective role of vitamin C. ZUMJ. 25(2):250-60.

Hashem HE, Safwat MDE, Algaidi S. 2012. The effect of monosodium glutamate on the cerebellar cortex of male albino rats and the protective role of vitamin C (histological and immunohistochemical study). J Mol Hist. 43:179-86.

Herawati D, Giriwono PE, Dewi FNA, Kashiwagi T, Andarwulan N. 2019. Critical roasting level determines bioactive content and antioxidant activity of Robusta coffee beans. Food Sci Biotechnol. 28(1):7-14.

Mescher AL. 2018. Junqueira's basic histology: text and atlas 15th edition. New York : McGraw Hill International.

Garman RH, Li AA, Kaufmann W, Auer RN, Bolon B. 2016. Recommended methods for brain processing and quantitative analysis in rodent developmental neurotoxicity studies. Toxicol Pathol. 44(1): 14-42.

Afsari IGAN, Fitriani H, Suroso TA. 2019. The effectiveness of lemon juice (Citrus limon) on purkinje cell of white male mice (Mus musculus) cerebellar cortex that exposed by monosodium glutamate (MSG). ICASH. 4: 171-76.

Towaha J, Aunillah A, Purwanto EH, Supriadi H. 2014. Pengaruh elevasi dan pengolahan terhadap kandungan kimia dan citarasa kopi robusta lampung. J. TIDP. 1(1): 57-62.

Randriani E, Dani, Supriadi H, Syafaruddin. 2016. Ekspresi fenotipik klon kopi robusta "sidodadi" pada tiga ketinggian tempat. J. TIDP. 3(3): 151-8.

Saloko S, Sulastri Y, Murad, Rinjani MA. 2019. The effects of temperature and roasting time on the quality of ground Robusta coffee (Coffea rabusta) using Gene Café roaster. AIP. 1-14.

Nehlig A. 2016. Effects of coffee/caffeine on brain health and disease: what should i tell my patients?. Pract Neurol. 16(2): 89-95.

Kolahdouzan M, Hamadeh MJ. 2017. The neuroprotective effects of caffeine in neurodegenerative diseases. CNS Neurosci Ther. 23(4): 272-90.

Wilkins A. 2017. Cerebellar dysfunction in multiple sclerosis. Front Neurol. 8(312): 1-6.

Dennie D, Louboutin JP, Strayer DS. 2016. Migration of bone marrow progenitor cells in the adult brain of rats and rabbits. World J Stem Cells. 8(4): 136-57.

Ohira K. 2018. Regulation of adult neurogenesis in the cerebral cortex. J Neurol Neuromedicine. 3(4): 59-64.

Galvan V, Jin K. 2007. Neurogenesis in the aging brain. Clin Interv Aging. 2(4): 605-10.

Mateus JM, Ribeiro FF, Gomes MA, Rodrigues RS, Marques JM, Sebastilão AM et al. 2019. Neurogenesis and gliogenesis: relevance of adenosine for neuroregeneration in brain disorders. J Caffeine Adenosine Res. 9(4): 129-44.